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ABSTRACT

Some electronic properties of GaAs-AlAs heterojunctions

and of metal-semiconductor junctions are presented in this

Report.

GaAs-AlAs heterojunctions have been analyzed by means

of a selfconsistent localized scheme, based on a Wannier

function approach. Finite superlattices for (100) and (ill)

directions have been considered, and their structural

properties have also been discussed. Our results show small

ionic relaxations at the (100)-interfaces, and no appreciable

relaxation at the (111)-heterojunction. The electronic

selfconsistent calculation gives a small transfer of charge

from AlAs to GaAs, so that a potential barrier between both

semiconductors appears. By calculating this barrier, we have

obtained the energy difference between the top of both

semiconductor valence bands, and found good agreement with

the experimental evidence.

Abrupt metal-semiconductor junctions have been analyzed
by a selfconsistent tight-binding calculation. Realistic

results for the junction have been obtained in a (ll)-Si-Ag

interface. General junctions for Si have been discussed

within the same context, and we have shown that: (i) the

barrier height increases with the strength of the metal-

semiconductor coupling; (ii) the barrier height is

essentially determined by the coupling between the

semiconductor and the Zat metal layer.

Etched metal-semiconductor junctions have been analyzed.

in a similar way. We present a realistic calculation of a

Si-H-Ag junction. More general cases for Si have been

explored by changing the parameters of the interface. Our

results show: (i) The barrier height presents small changes'

(of up to 0.2 eV) depending on the ad-atom electronegativities.

For ad-atoms of low (high) electronegativity, we find higher

(smaller) barrier heights. (ii) The barrier height has been
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found to be practically determined by the coupling between

the semiconductor and the ad-atom interlayer.

Finally, non-abrupt III-V semiconductor-meta.

junctions have been analyzed and shown to interdiffuse as

a function of the metal-semiconductor heat of reaction and

o6 the heat o6 reaction Jot the Aemiconductor.



CHAPTER I HETEROJUNCTIONS

I.1. INTRODUCTION

Semiconductor-semiconductor junctions have become an

important subject with many potential applications. Our work

on this topic has been concentrated in the analysis of

GaAs-AlAs superlattices (SL).

In the last few years much progress has been made in

the technology of artificial crystals constituted by periodic

layers of two semiconductors. These superlattices show, under

certain conditions, very interesting properties such as

extremely high carrier mobility (Hess and Holonyak Jr. 1981)

or negative differential resistance (Esaki and Chang 1974).

A SL which has received a great deal of attention is GaAs-

AlxGa Ix as grown by molecular-beam-epitaxy. Several
experimental techniques (Dingle et al.1974, 1975, Manuel et

al.1976, Sai-Halasz et al.1978, van der Ziel and Gossard 1978,
Barker et al.1978, Merlin et al.1980, Colvard et al.1980,

Holonyak Jr. et al.1980, 1981, Weisbuch et al.1981a, 1981b,

Gormik et al.1981, Piczuk et al.1981a, 1981b) have been used

to study the vibrational and electronic properties of this

system. The Kroning-Penney model has been extensively used to

interpret the phenomenology. Such a model may be adequate

when the layer thickness is so large that regions with bulk

properties of each semiconductor exist. However, the

theoretical analysis is more difficult in those systems

where ultra-thin layers form the SL. Fortunately, in such

cases the experiments have been performed in samples where

x = 1 (van der Ziel and Gossard 1978, Barker Jr.et al.1978,

Merlin et al.1980, Colvard et al.1980). This makes possible

a calculation of the properties of these (GaAs)m-(AlAs) n SL's
where m and n are the number of layers of each semiconductor

in a period of the crystal. Some efforts (Caruthers and
Lin Chung 1978, Osbourn and Smith 1979, Schulman and McGill,
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1979, 1981, Andreoni and Car 1980, Schulman and Chang 1981)

have been made to study such systems by means of model

hamiltonians. However, to our knowledge, just only one self-

consistent calculation (Pickett et al.1978) has been carried

out for (110) oriented GaAs-AlAs SL's. This implies hetero-

polar interfaces with properties essentially different to the

homopolar ones of the experimental samples which have been

grown in the (001) direction. In this project, we have

analysed several SL's with polar interfaces, both (001) and

(111) by means of a self-consistent calculation of their

electronic and structural properties. Besides the electronic

self-consistency, similar to the one obtained in the

computations published for other interfaces as (GaAs-AlAs)

(110) (Pickett et al.1978), (ImAs-GaSb) (100) (Ihm et al.1979)

and (Ge-GaAs) (Kunc and Martin 1981), we extend the self-

consistency to the ions which are free to move in order to

reach their equilibrium positions. The method is a minimization

of the total energy in terms of a localized basis which makes

easier its comparison with calculations where a tight-binding

model hamiltonian is used. Since the experiments are usually

performed in (001) SL's , we will devote more attention to

this case. In particular, we will analyze several systems with

different layer thickness in order to see when the SL can be

considered as a junction of the two semiconductors or as a

completely new crystal.

1.2. SELF-CONSISTENCY. LOCAL DENSITY FORMALISM

1.2.1. The method

We use a method which has given satisfactory results for

other problems (Tejedor and Vergds 1979, Verges and Tejedor

1979a, 1979b, S~nchez-Dehesa et al.1981a, 1981b, 1981c). In

order to describe the electronic structure of the crystal, we

use a Wannier functions (WF) representation (Kohn 1973). This

localized basis presents an important advantage in our case

of fully occupied bands. By means of a unitary transformation
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between the eigenstates im(r) and the WF am (r-) (where the
index m sums over the valence bands), both the charge density,

p (), and the kinetic energy, T, can be written in terms of

the WF as follows (Verges and Tejedor 1979a, 1979b):

VB BZ -~* +VB

p( ) = 2 m (r) = 2 m am (.1 )

VB BZ I+ _L1V -T =2 1 Oi r 2~- > r
(1.2)

= 2a ( rom _)- a('-,)>
m R

where the sum in it runs over the first Brillouin zone, whereas

the sum in A runs over all the lattice positions. Accordingly,

within a local approximation, the total energy of the system

can be expressed as a function of the valence WF and an ionic

pseudopotential, v.(r). Thus, the energy can be written as

ET E e + Ebs , (1.3)

where Ee takes account of the purely electrostatic interaction

of a set of ionic pseudopotentials, all embedded in a

compensating uniform negative background (the zero Fourier

component of p), while all the other contributions are

included in the band-structure term Ebs. The electrostatic

term is split as usual (Verges and Tejedor 1979b) into two

parts: (i) the Ewald energy EEW, containing the interaction of

a set of point ions with the electronic background, and (ii)

the correction coming from the spatial dependence of the ionic

pseudopotential v i (r):

Ee = + -Jlfd-Cvi 1 r+ .2 + lJd'r[v 1 ~+ -E(.4
e EW N i

where the sums in 1 run over the types of anions and cations

in the supercell. In eq.'(I.4) P is the mean electronic charge
and Za and Zc are the ionic charges, i.e. 3 and 5 in our case.
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The Ewald energy is computed by standard methods (Harrison

1966, Sfnchez-Dehesa 1982) and is given by

N Z2+N Z2
1 aNa c c+

E = (--2)- aa cc +EW V7 N
[NaZaS (" ) +N ZSc S ( )+NcZcSc()J

+ g7g

* exp(-g 2/4a) i- 1 exp(-g2/4a) (1.5)

where Na and N are the numbers of anions and cations in the

supercell with volume Q, and Ni  Na+Nc . The structure factor

is definedas usual:

Sj(g) =i L vj exp(-ig-. .) ,(I.6)

j N JP(16
j V

where Vj are the positions of the anions and cations (j=1,2),

respectively, within the supercell. In eq.(I.5) several terms

coming from sums in real space do not appear because we take

the parameter a high enough to guarantee their cancellation.

The actual value in our computation is a = 1.2 a.u., which

gives a fast convergence in the sums involved in eq.(I.5).

The band structure energy per ion has the expression

Ebs = N 2(am(- )I-Iam( -)) +

+ fd'p(')~cc[p(')] + fd'Vi('[p('-p ] +

+ d vH(r)

f dr= [P - (1.7)

where NT is the total number of ions in the crystal. The four

contributions to Ebs are the kinetic, T, the exchange and

correlation, Exc, the ion-electron, EI, and the Hartree, EH,

energies respectively. The last two terms do not contain the

zero Fourier component of p, which is included in Ee. In order

to elude the cumbersome spatial integrals in eq.(I.7), the

evaluation of Ebs will be obtained in reciprocal space as will
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be detailed below (Verges and Tejedor 1979b).

Once the total energy is written in terms of the WF's,

a self-consistent solution is obtained by a minimization of

that total energy as a function of a set of variational

parameters included in a set of trial WF's. The whole scheme

to get trial WF's from localized functions was proposed by

Kohn (1973) and it is simple enough to allow the calculation

of different crystal properties (Tejedor and Verges 1979,

Verges and Tejedor 1979a,b, Sgnchez-Dehesa et al.1981a,b,c).

In particular, it has been used to analyze stacking faults in

silicon (Sgnchez-Dehesa et al.1981b) by a model where a

ficticious SL is used. Satisfactory results were obtained, so

that we will follow here the same procedure and only a few

technical points need more attention. The whole procedure is

sketched in the following diagram:

Choice of a set of
variational parameters 1

Calculation of T Variation of the

and P f rom the WE's a parameters

Calculatio
>Ebs 1= EI+E++xc

Structural -- f

parameters Calculation of

and ionic ET = Ebs+Ee

pseudopotential

Self-consistent
WF a m(rs)



The procedure begins with a set of sp3 Slater type

orbitals (STO) centred at the positions where ionic pseudo-

-potentials are placed to describe the effect of the nuclei

and core electrons. In order to have a good starting point

for the SL calculation, we have previously computed the WF

and lattice constant for GaAs and AlAs perfect semiconductors

in zincblende structure. We apply our method with the ionic

pseudopotentials to be used later on for the (110) GaAs-AlAs

superlattice (Pickett et al.1978), taking into account that

the pseusopotential must be normalized to the volume of the

unit cell, so that it must be adequately varied when the

introduction of ionic relaxations changes that volume. The

parameters.of the STO involved in the valence WF's and the

lattice constants are the results we are interested in,

because this information is required as a stafting point in

the SL calculation. Moreover, the value of the lattice

constant is a test of the correctness of our approach.

Table I.1 gives the different contributions to the total

energy of the GaAs zincblende crystals as a function of the

lattice constant. By using these results we have obtained

5.556 K and 5.544 A for the lattice parameters of AlAs and
GaAs respectively, when the necessary sums (Tejedor and Ver-

g6s 1979, Verges and Tejedor 1979b) running over the

reciprocal lattice vectors contain only the terms corresponding

to 1 it < /a. The agreement with the experimental values

(Weast 1980), 5.660 X and 5.653 A respectively, improves when

more g-vectors are included, but in the SL case that means a

numerical task beyond our possibilities, so that we take

that maximum value of Igl in our calculations. As a different

test of our results we present in Table 1.2 the Fourier

components, V(9), of the total self-consistent potential (Te-

jedor and Verges 1979) with origin midway between ions:

V(9) - ei Cos(.) - iVAsin(g.)I
2 S

where T :-(1,,1), VS = 2(V-c-V) and Va = 2 (Vc_ a). The

agreement with other theoretical estimations supports the

adequacy of our calculation (Caruthers and Lin Chung 1978,
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Walter and Cohen 1969, Stukel and Euwema 1969). The other

result we need is the valence WF. They are built up from trial

functions for each bond given by

f+ ( ) =sinX¢ ( ) + cosXO.( a (r- (I 8)
Vi V Vi v

3where . (r) is a sp Slater-type orbital (STO) centered atVione ion and pointing along the bond direction labelled by i"

Besides the variational parameter A, which gives the relative

weight of each one of the two sp3 orbitals, other parameters

varying in the minimization are the exponents of the STO.

Table 1.3 shows our results for all those variational

TABLE 1.3.- Variational parametert obtained by minimizing the

total energy of GaAs and AlAs described in a
zincblende (ZNB) and SL framework respectively.

The STO of Ga and As have the functional form

corresponding to states of the fourth atomic shell,

and the orbitals of Al the form corresponding to

the third atomic shell.

GaAs AlAs

ZNB SL ZNB SL

1.0397 1.0462 1.0139 1.0153

a 2.4754 2.4779 2.4705 2.4744

p 1.6885 1.6910 1.7051 1.7048

04 3s 2.2764 2.2701 1.5588 1.4890
c

p 1.4912 1.4937 1.0384 1.0351

parameters for AlAs and GaAs with zincblende structure and

the calculated lattice constant given above.
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Since these results will be used later on in our

computations of SL, it is convenient to check them for perfect

crystals described in the SL framework. To this end, we have

considered a (001) type SL, and introduced the same condition
_), 1 8n/a given above, which amounts to using 129

reciprocal vectors. In Table 1.3 the variational parameters

obtained for this case are compared with the ones obtained in

the zincblende structure. The agreement can be considered

satisfactory. As far as the contributions to the total energy

are concerned, we get results which differ less than 10-4 a.u.

from the ones given in Table I.1 for the calculation in

zincblende structure. All these results seem to support that

we can use confidently the parameters obtained in a zincblende

structure for different types of SL's.

Once the perfect crystal has been analyzed, the results

so obtained are used to start the SL calculation. The ions

are placed at their ideal positions in a perfect SL with a

lattice constant which is the average of the two constants

obtained above for each zincblende crystal. With this choice

no missmatch of the two lattices is allowed, which is a good

approach because of the very similar parameters of these

semiconductors. For this lattice constant, the total energy is

self-consistently computed. The calculation is repeated for

several lattice constants around that initial value, so that

a more precise minimization is achieved. In a final step the

process is completed by allowing ionic relaxation at the

interfaces, a feature never previously calculated for these

SL's. Each one of the necessary steps is fulfilled in the

following way. The valence WF's of the superlattice are

variationaly computed with the same procedure from a set of

linear combinations of sp3 STO. Now the symmetry along the

superlattice direction has been broken so that both the

exponents of the orbitals and the mixture coefficients can be

different for each bond. This implies many variational

parameters and consequently a rather cumbersome numerical

task. Therefore we adopt the approach which gave us excellent

results in the case of the stacking fault of silicon (Sanchez-

Dehesa et al.1981b). Just the parameters of the atoms at the



interfaces are treated variationaly, fixing those correspon-

ding to the inner layers to their bulk values previously

calculated at the zincblende structure. In order to test the

results of this enormously simplified approach we have made

some particular calculations by also mii-imizing with respect

to the parameters of inner layers. The total energy decreases

so little with this degree of freedom in which no significant

variation appears, that this simplified approach can be

considered as rather effective. In this scheme, the computation

starts by taking, for the interface bonds, the bulk

parameters as the initial values for the minimization

procedure.

As far as other technical points are concerned, they

are treated as detailed in Sfnchez-Dehesa et al. (1981b), in

particular the special points scheme used to perform integrals

in reciprocal space.

In spite of the fact that the following sections are

devoted to the analysis of different SL's, we can advance here

the general trend of the results. The main variation obtained

with the minimization corresponds to the mixture parameter A

at the interface as well as to the coefficients, obtained in

the orthogonalization procedure, of each WF given in terms

of the bond orbitals (1.8). However, the exponents of the

STO do not vary significantly. Such a result could be expected

because something similar happens in a much more drastic

situation as that of the change from free atoms to ions

forming a crystal (Tejedor and Verges 1979, Verges and

Tejedor 1979a).

1.2.2. Results

1.2.2.1. (001) Supe4Zattice.6

In this section we discuss the results obtained when

the method avobe described is applied to SL oriented along

the (001) direction, which are those of experimental interest.

We concentrate upon (GaAs)m-(AlAs) m systems with m = 1,2,3,

in order to analyze the effect of layer thickness on the
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properties of the SL. Experimental information (Barker Jr.

et al.1978) for such very thin SL's indicates that these

crystals must be considered as three-dimensional (3D) with

properties rather different to those of thicker SL's, where

two-dimensional (2D) confination appears. Our results allow

to analyze how the transition in the 3D-2D behaviour occurs

and, in particular, the way in which transfer of charge and

ionic relaxations takes place at the interface of thicker SL

and heterojunctions.

Figures 1.1, 1.2 and 1.3 show the supercell used in the

calculation for the cases m = 1, 2 and 3, respectively.

Straight lines joining the ions represent the bonds (eq.(I.8))

from which a set of trial WF's is built up as described

above. As in many other systems (Tejedor and Verges 1979,

Verges and Tejedor 1979a,b, Sfnchez-Dehesa et al.1981a,b,c),

our results show that each valence WF can be associated with

one of those bonds because its weight in the neighbouring

bonds decreases very quickly. Therefore, we refer hereafter

sometimes to a particular valence WF as a particular bond. As

mentioned above, we start by self-consistently solving the

problem of a perfect (without ionic relaxations at the

interface) SL in order to determine the size of the supercell.

This can be represented by the bond length 1 in each case

(GaAs) m -(AlAs) m . We get 11 = 2.404 A, 12 = 2.370 A and

13 = 2.380 R, which are very close to 1GaAs = 2.401 A and
1AlAs = 2.406 A obtained in zincblende structure. This can

be taken as a satisfactory test of the consistency of our SL

calculations. Once the bond length has been determined for

the inner ions, the distance between ionic layers at the

interface is allowed to vary looking for equilibrium

positions. Such step is made only for m = 3 because it does

not mean a new variational freedom in the other two cases

where all the ions can be considered as being at an interface.

For m = 3 we get that both the distances Al-As and Ga-As at

the interface increase in a 2.5 % of their bulk value. This

implies that the period of (GaAs)3 (AlAs)3 SL's is 1.008 times

that of the ideal one. Let us now discuss the values of the

variational parameters at this minimum of the total energy.
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a

FIGU3RE 1.1.- Supercell used in th~e calculation of a

(GaAs) 1-(AlAs) I SL oriented along the (001)

direction. Heavy lines represent the bonds

from which WF's are built up. Parameter a

is the lattice constant of the corresponding

zincblende crystal.
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a9

FIGURE 1.2.- Supercell used in the calculation of a

(GaAs)2j-(AIAs) 2 SL oriented along the (001)

direction. Heavy lines represent the bonds

from which WF's are built up. Parameter a

is the lattice constant of the corresponding

:incblende crystal.

7 5
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FIGURE 1.37 Supercell used in the calculation of a

(GaAs )3 -AlAs) 3 SL oriented along the (001)

direction. Heavy lines represent the bonds from

which WF's are built up. Parameter a is the

lattice constant of the corresponding crystal.
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No significant variations exist for the exponents of the STO

with respect to the bulk values. The main changes at the

interface are those of the mixture parameters X appearing in
eq.(I.8). Table 1.4 gives our results for such parameter for

the three SL's under study. The comparison between bulk and
interface values shows that the combination between Ga and
As orbitals does not change significantly. The main variation

is that of the mixture of Al and As orbitals. The connection

TABLE 1.4.- Values of the mixture parameter X for bonds in
the bulk and at the interface for (001)-type

superlattices. XA is for the combination in Al-As

bonds, and XG for Ga-As bonds (eq.(I.8)).

Bulk Interface

X A = 1.005

AG = 1.043

XA = 1.014 XA = 0.991
m=2 A20.9

XG = 1.042 AG = 1.040

A = 1.014 AA = 0.974

AG = 1.042 AG = 1.046

of these results with physical properties is far from
straightforward because the main change produced in going
from perfect crystals to SL is not in the orbitals shape but
in the way in which these orbitals combine to give the WF's
of the system. In other words, the effect of the SL is
essentially contained in the orthogonalization procedure.
Therefore it is better to directly analyze physical results

nn I - e mn lm~n imlii nnm m
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as the charge density or the potential self-consistently

calculated for the SL. Figure 1.4 shows the potential

average parallel to the interface plane for (GaAs)3-(AlAs) 3 "

The mean value nf V(7) is 6 meV higher in the GaAs region

than in the AlAs one. The three different contributions to

this step are: the ionic potential Vi , the Hartree potential

VH, and the exchange potential Vxc

AV, = Vi (GaAs) - Vi (AlAs) = -0.0232 eV

AVH = VH(GaAs) - VH(AlAs) = 0.0284 eV

Vxc = Vxc (GaAs) - Vxc (AlAs) = 0.0009 eV

From these values we can conclude that in the self-

consistent process the differences in the ionic potentials

are screened by the electrons so that a barrier in the

opposite direction results.

Similar results are obtained here for m = 2 and by

Pickett et al. (1978) for the (110) oriented SL. The reason of

this induced potential barrier is easily understood in terms

of the charge transfer. In order to visualize this transfer,

Figures 1.5 and 1.6 show, for m = 2 and 3 respectively, the

difference between the SL charge density and the charge of

each perfect crystal placed at the adequate spatial region.

In both cases, a net charge is transferred from AlAs to GaAs.

Such a result could be expected from the Pauling's scale of

electronegativities (Pauling 1972), where Ga has a higher

value than Al, so that the latter tends to transfer electrons

to the former. This effect is mainly concentrated at the

interface and it has a clear implication in the interaction

between localized orbitals. In our scheme we work with the

interaction between WF's ai(r) given by

cij(R) = R)> , (1.9)

where H is the self-consistent Hamiltonian, R a lattice vector

and i,j label two WF's of the set associated to the valence
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FIGURE 1.5.- Charge transfer in electrons per ion

selfconsistently computed for (GaAs) 2- (AlAs) 2

SL in the (001) direction. Layers of ions are

represented by 9 for As, A for Al and 0 for Ga.
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bands (Tejedor and Verges 1979, Shnchez-Dehesa et al.1981b).

In Tables 1.5 and 1.6 we show some of the interactions for

m = 1 and 2 respectively. In order to compare with simple

TABLE 1.5.- Interaction c ij(R=0) (in a.u.) for the (GaAs)

(AlAs)1 SL in the (001) direction. Subindices G

and A refer to interactions in GaAs and AlAs,

respectively. The labels i,j correspond to the

ones in Figure I.1.

Neighbourhood I= ijHia >
between bonds 1JJ

Zero EGG (1,1) = 0.1790

sAA(3,3) = 0.1648

First neighbours EGG(1, 2) = -0.058

e :3,4) - -0. 0688

LA (1,3) =-0.0663

Second parallel EGA(I,5) = 0.0144
neighbours

non parallel GA (1,6) = -0.0018

CGA(1, 8 ) = -0.0048

tight-binding models, it is sufficient to look at the inter-

action of a WF with itself because a WF essentially contains

atomic orbitals of two first neighbours. Table 1.7 shows this

magnitude for different WF's in the (GaAs)3 -(A1As) 3 SL. The

conclusion drawn from these results is that the self-

interaction of Ga-As bonds at the interface tends to be an

average of the two bulk values in agreement with a simple
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TABLE 1.6.- Interactions C.. (R=0) (in a.u.) for the

,(GaAs)2-(AlAs) 2 SL in the (001) direction.

Subindices G and A refer to interactions in

GaAs and AlAs respectively. The labels i,j

correspond to the ones in Figure 2. We have

artificially labelled the centre of each semi-

conductor as bulk zone.

Neighbourhood Interface zone Bulk zone
between bonds

£GG(1,I) = 0.1798 eGG( 5 ,5) 0.1821
Zero

CAA(3,3) = 0.1594 CAA(13,13) = 0.1662

CGG(1, 2 ) = -0.0580 CGG(5,6) = -0..622

First A(3,4 ) = -0.0666 CA(13,14) = -0.0654neighbours AAA

CGA( 1 , 3 ) =-0.0703

eGG(1,5) = 0.0135

£GA(11,15) = 0.0149

1 parallel CAG( 3 , 7 ) = 0.0125

0
(9,13) = 0.0137

aAA

V eGG( 1 , 6 ) = -0.0020
0
) CG(12,15) = -0.0014

0 non -0
parallel EAG(9, 6 ) =-0.0034

AG.0
EAA (9,14) = -0.0026...-
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tight-binding model proposed by Schulman and McGill (1979).

However, this is not the case of the self-interaction of the

Al-As bond at the interface, which is significantly lower

than the bulk values. This clear difference with the simple

tight-binding model is associated to the change of the

mixture parameter X mentioned above and shown in Table 1.4.

Let us finally discuss our results for the band

structure. Once the self-consistent potential has been

obtained, the valence spectrum is computed by diagonalizing

the Hamiltonian represented in a basis of Bloch sums of WF's

(Tejedor and Verges 1979). Then, the calculation is rather

simple because the size of the matrix is just 8mx8m. Figures

1.7 and 1.8 show the valence band structure for m = 1 and 2,

respectively. Table 1.8 gives the eigenstates at the valence

band edges for the three SL's we are concerned with. The main

result is the well known (Caruthers and Lin Chung 1978,

Schulman and McGill 1979, Andreoni and Car 1980) splitting of

some meV of the upper valence states at F. As it was obtained

by Pickett et al. (1978) in their self-consistent calculation

for (110) GaAs-AlAs SL's, we get a non degenerate upper state,

but since the width of our SL is too small, such a state is

not concentrated at the GaAs region. Therefore, it cannot be

considered as a two dimensional SL state as the ones

experimentally observed in thicker SL's (Dingle et al.1974,

1975, Manuel et al.1976, Sai-Halasz et al.1978). In order to

clarify the meaning of these band structures we present in

Table 1.9 the levels at the r point for perfect crystals
treated in the SL framework. A magnitude which gives the trend

of the band structure as a function of the SL thickness is the

valence band width. Table 1.8 shows an increase of this width

as m increases. As shown in Table 1.10, we also obtain a

similar increase for the total energy per atom, a magnitude

that, to our knowledge, is not possible to compare with any

experimental information.

1.2.2.2. (111) Supe~tatticZe

No experimental or theoretical information exists, to

our knowledge, for SL's grown in this direction. We have



FIGURE 1.7.- Band structure for the VB of the (GaAs),-(A1ANs),1
SL in the.(001) direction. The origin of

energies Is taken at the mean potential of the
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10.
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FIGURE 1.8.- Band structure for the VB of the

(GaAs) 2 -(A1As) 2 SL in the (001) direction.

The origin of energies is taken at the mrean

potential of the SL.
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TABLE 1.10.- Contributions to the total energy (in a.u.) for

the (GaAs)m-(AlAs) SL in the (001) direction

for different values of m.

m= 1 m= 2 m= 3

E -0.9727 -0.9611 -0.9611

EH 0.2566 0.2571 0.2567

T 1.3223 1.3223 1.3229

E -1.1879 -1.1876 -1.1877xc

Ebs -0.5817 -0.5693 -0.5682

Ee -3.4961 -3.4961 -3.4961

ET -4.0778 -4.0654 -4.0643

applied our method to such a system because, together with

the (001) SL above discussed, they contain the two common

polar interfaces. Moreover, we will use the results here

obtained to analyze, in the next section, the valence band

discontinuities at semiconductor heterojunctions.

Figure 1.9 shows the supercell used to calculate the

properties of a (GaAs) 3 - (AlAs)3 (111) SL with the same

approach that the above discussed for the (001) case. Again

we start with the ions placed at the ideal bulk positions and

minimize the energy as a function of the bond length, 1. We

get 1 = 2.403 A, which is practically the average of 1GaAs

2.401 and 1AlAs = 2.406 R; previously obtained in

section 1.2.1 for perfect zincblende crystals. Once this bulk

bond length has been determined, the interface ions are allowed.

to relax looking for a deeper minimum of the energy. In

contrast with the (001) SL where a net relaxation was obtained,

now the distance between Al and As interface planes increases

in a o.5 %, but the distance between Ga and As interface

planes decreases in the same amount. In other words, no



3)0

*As
AA1
oGQ

FIGURE 1.9.- Supercell used in the calculation of the

structure of a (GaAs) 3- (AlAs) 3SL oriented

along the (111) direction. Heavy lines

represent the bonds (eq.(I.8)) from which W#F's'

are built up.
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relaxation appears at this interface where just the As plane

slightly moves towards .the Ga plane but the Al-Ca- distance

does not change. In spite of this difference, our results for

the variational parameters are rather similar in both systems.

Again the only change at the (111) interface is that the

mixture parameter X for Al-As bond significantly decreases

with respect to bulk values as shown in Table I.11. This

similitude implies that charge transfer and differences of

mean potentials appear in this (ill) SL in the same way as in

the (001) one. So we have

V= V(GaAs) - V(AlAs) AVi + AV+AV xc

= -0.022 + 0.029 + 0.001 (in eV).

TABLE I.11.- Values of the mixture parameter X (eq.(8)) for

bonds in the bulk and at the interface (GaAs)3-

(AlAs)3 SL in the (1il) direction. XA is for the

combination in AlAs bonds and AG for Ga-As bonds.

Bulk Interface

X AA = 1.015 AA = 0.999

(GaAs) 3-(AlAs) 3

(111) AG = 1.046 AG = 1.048

The charge density that AlAs transfer to GaAs implies that

the mean value of V(z) at GaAs is 8 meV higher than the mean

value of V(z) at AlAs. Since a figure of V(z) or the average

transfer charge would be very similar to Figure 1.6, we give

here a different picture of the same points by showing in

Figure 1.10 the contour plots of the total charge density

around the interface.

All these results bring to the conclusion that (001)

and (111) SL's are very similar, the main difference being
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FIGURE 1.10.- Total charge density at the interface of a

(GaAs)3-(A1As) 3 SL oriented along the (111)

direction. Units are in electrons per ion.
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that the former shows ionic relaxation at the interface and

the latter does not. One more difference appears when one

analyzes the spectrum of this (1ii) SL given in Table 1.12.

TABLE 1.12.- Band edges at r of the valence band of perfect
crystals and (GaAs)3-(AlAs) 3 SL all of them in

the (111) direction. Energies in eV are referred

to the mean potential for each SL.

(GaAs) 6 - (AiAs) 0  (GaAs) 0-(AlAs) 6  (GaAs) 3-(AlAs) 3

10.040(2) 9.760(2) 10.065(2)

10.036 9.751 9.927

9.665(2) 9.394(2) 9.643(2)

9.652(2) 9.393(2) 9.405(2)

-2.253 -2.623 -2.677

Now the upper state at r, placed 10.07 eV higher than the mean

value of the SL potential, is doubly degenerated and is
localized at the GaAs region. Since this type of localized

states has been experimentally obberved in thicker (001) SL,

our result suggests that the transition from 3D to 2D
behaviour appears before in (111) SL's than in (001) ones,

where we have not obtained states localized in the GaAs

region.

1.2.3. Discussion

We have used a self-consistent localized scheme in terms

of WF's to analyze the structural and electronic properties

of several GaAs-AlAs SL's grown in the (001) and (1ll)
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directions. From the structural point of view, we have found

that those SL's with polar interfaces differ each other in

that the (001) ones present ionic relaxation while the (111)

ones do not. Nevertheless, this difference is not very

important because the relaxation around the As ions of the

(001) interface just affects to the first Ga and Al planes

on each side both increasing in a 2.5 % their distance to the

anion. Such small relaxation has no significant effect on the

electronic properties. In any case, this relaxation is a

purely interface effect so that it seems quite natural to

consider that the displacements here obtained can be valid

for thicker SL and heterojunctions.

Since we work with a localized scheme the influence of

an interface does not enter too much into the deep layers of

each semiconductor. Therefore (GaAs) m-(AlAs)m SL's, for both

orientations, show bulk-like behaviour in the central layer

of each semiconductor for m = 3. For instance, our results

for these m = 3 cases allow to see how AlAs transfers a
small amount of electronic charge to GaAs, so that a

potential barrier between both semiconductors appears. At

this point, it is very tempting to use this barrier A between

mean potentials to estimate the shift of the electronic

structure of GaAs with respect to AlAs for thicker SL's or

even an heterojunction of semiinfinite semiconductors. The

best magnitude to measure this shift is the difference AE v

between the top of the AlAs and GaAs valence bands, which

requires the position of that level E v for both bulk semi-

conductors. In order to be consistent with our approach, we

have computed that level in a SL framework for (GaAs)6 (AlAs)0
and (GaAs)0 (AlAs)6 for both orientations. We have obtained

AE(0 0 1 ) = A(0 0 1 ) + EGaAs(0 0 1 ) - EAlAs( 0 0 1 ) = 0.282 eV
V v v

AE(1l1 ) = A(111) + EGaAs(l) - EAlAs(llI) = 0.288 eV

which are very similar each other. The unique experimental

information for this magnitude is obtained as a extrapolation

for x - 0 of this shift measured in GaAs-Ga xAllIx thick SL's

x -
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oriented along the (001) direction (Dingle et al.1975). The

experimental result is AEv = (0.15 ± 0.03)Eg, where Erg is

the direct gap at the r point of the SL. In this work we do

not conc:entrate on conduction bands which are required to

know Er, but it is straightforward to use the self-consistent
g

Hamiltonian we have obtained to compute such magnitude. We

have got AEv = 0.135 Er which compares fairly well with theg
above mentioned experimental result. This suggests the

possibility of an analysis of thick SL or heterojunctions by

using the information obtained for ultrathin SL.

In spite of the similarity of both (001) and (111) SL's

with m = 3, the electronic spectrum shows a significant

difference. In the (111) SL the upper valence state is

spatially localized on the GaAs region as it has been

observed experimentally for thicker SL's. However, in the

(001) SL's such localization does not exist in our results.

1.3. ELECTRONIC CONDUCTION BANDS

1.3.1. Simple model

Once we have analyzed in detail the VB structure of

narrow SL's, we pay some attention to the conduction band

(CB) structure. We concentrate on (GaAs) 4 - (AlAs)4 SL's along

the (001) direction because they have been studied

experimentally (Barker Jr.et al.1978, Merlin et al.1980,

Colvard et al.1980). Since the analysis of the CB is rather

more complicated than the one of the VB, we use a simple

Hamiltonian which can be justified from the self-consistent

calculations discussed above.

We use a tight-binding model (Schulman and McGill 1979)

with four orbitals per atom. The tight-binding parameters

for perfect semiconductors are fitted to bulk band structures

(Osbourn and Smith 1979, Schulman and McGill 1979). So the

tight-binding matrix for the superlattice can be straight-

forwardly obtained. Its form is shown in Figure I.11. It is

organized in 8x8 blocks representing the integrals between



36

FIGURE I.11.- Superlattice tight-binding matrix. Each block

represents an 8x8 submatrix. The upper right-

hand corner block, B, links AlAs and GaAs

slabs. The matrix is organized in such a way

that each block corresponds to matrix elements

between orbitals centered on atoms in the same

(A and a) or adjacent (B, b or S) SL layers.

AA B

B tA B

A B

Bt
B*

r \b

b a b

b a b

iR b a
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atomic orbitals. Each layer contains a single anion and cation

per unit cell. We just retain interaction up to second

neighbours so that there are only two types of blocks. The

corner blocks contain the integrals between adjacent layers,

where each layer is in an adjacent slab. These blocks are

the typical ones connected with the SL and they contain the

phase factor exp(ikzd), where d is the slab width and kz is

the component of the k vector perpendicular to the interface.

In this way the total size of the matrix is in our case

16mxl6m = 64x64.

The GaAs and AlAs parts of the SL share common As ions

at the interface. Therefore, there is no problem in

dptermining the matrix elements for first-neighbours. They

are taken from the bulk values. However, the bulk fitting

does not provide parameters for second-neighbours at this

position. Instead, a simple average of As to As, Al to Al and

Ga to Ga parameters has been used.

The direct diagonalization of this matrix gives us the

whole band structure we are interested in.

1.3.2. Results

With this model we have computed the band structure

along the i-space direction perpendicular to the interfaces

in order to estimate the effective masses of the SL states.

Table 1.13 shows the energies for different values of

k = 21/d(O,0,kz) obtained with the tight-binding parameters

given by Osbourn and Smith (1979). All the SL states given

in this table have their eigenfunctions located at the GaAs

spatial region, so that, as is well known, this is a SL of

type I, i.e. where electrons and holes are in the same region;

From these results we can estimate the effective masses

(at r) of these bonds. We get for the electron, heavy hole

and light hole, me = 0.69, mh = 0.43 and m* = 0.19,Me mhlh=
respectively. They are rather different from the ones given

by a Kronig-Penney model: m* = 0.073, *h = 0.513 and

mlh = 0.08, which have been used to analyze the experiments

of light-scattering (Colvard et al.1980). However, the most
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TABLE 1.13.- Eigenvalues (in eV) of the SL states in a

(GaAs)4-(AiAs) 4 SL along the (001) direction.

(4a/r) kz

0 0.4 0.6 1

2.1942 2.1931 2.1921 2.1910
CB

1.9408 1.9578 1.9735 1.9917

0.00264 -0.02484 -0.05764 -0.12881

VB 0.00260 -0.02488 -0.05764 -0.12885

-0.00096 -0.06335 -0.13735 -0.20633

important result is that we get m* = 10.6 for the effective

mass of the second conduction band. The reason is that this

very flat band comes from the lowest CB at X in GaAs. This

is due to the folding of the Brillouin zone. Since that

state has a very high longitudinal mass in perfect GaAs, this

fact appears, and even is increased, for the second

conduction band of the SL. We think that this result can be

of great significance for resonance phenomena as the ones

appearing at the Raman scattering experiment discussed by

Colvard et al. (1980).
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CHAPTER II, METAL-SEMICONDUCTOR JUNCTION3

II.i. INTRODUCTION

The mechanism of Schottky-barrier formation has been

the subject of many different interpretations (Rhoderick

1978). In the last few years, new experimental information

has been obtained which points to the effect of the metal-

semiconductor reactivity on the barrier formation (Brillson

1978, Andrews and Phillips 1975, Ottaviani et al.1980,

Williams et al.1978, Brillson et al.1981). In particular,

the abruptness of the junction interface seems to be a

function of the metal-semiconductor bonding, with the

consequent effect on the barrier height (Brillson et al.

1981). Very recent experimental evidence has shown that

metal-semiconductor interdiffusion is by no means a rule and

that some structural effects, not completely understood, may

inhibit interdiffusion, allowing the existence of well-

defined abrupt interfaces. Silver on Si and InP (McKinley et

al.1979, -illiams et al.1977), as well as some silicides on

Si (Ho et al.1979), are well-known cases of abrupt junctions.

Other experiments with etched interfaces (Montgomery

et al.1979, Spicer et al.1980, Williams 1981, Mottram et al.

1979) show the dependence of the height barrier on the kind

of chemical compound and interlayer formed at the interface.

These and previous experiments point to the importance of a

few layers of the interface on the barrier formation.

This experimental evidence suggests that metal-

semiconductor junctions can be classified into three main

groups: (i) Abrupt interfaces, for which a rather ideal

junction is formed with a well defined separation between

the structures of the metal and the semiconductor; (ii)

etched interfaces, for which a reactant, say H, 0, C1 is

left between the metal and the semiconductor; and (iii)

reactive interfaces, for which the metal and the semiconductor

interdiffuse and/or form a new chemical compound at the

interface.
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All this rich experimental information has proved a

formidable challenge to theoreticians. Even abrupt interfaces

are far from a complete understanding, although they have

received, due to obv ious reasons of simplicity, a greater

attention.

Primitive theories have analyzed the Schottky-barrier

formation by means of a thermodynamic argument (Schottky

1942) and have included an appropriate density of states at

the interface (Bardeen 1947, Heine 1965). Leaving apart

other many-body approaches (Inkson 1973, Tejedor et al.1977),

we mention two recent models advanced by Spicer and Froeouff,

respectively. The defect model (Spicer et al.1980, Williams

199t) seems to be particularly appropriate for metals on

cleaved (110)-surfaces of III-V semiconductors, although it

does not seem applicable to covalent semiconductors. Froeouff

and Woodall (1981) have advanced a different model by a

combination of a Schottky model and the formation of clusters

at the interface.

At a different level of sophistication, we have the

work of Cohen and coworkers (1977), where a very elaborate

self-consistent calculation of an abrupt Al-Si junction has

been given, within a pseudopotential theory. Unluckily, this

line has not been pursued further and no systematic analysis

of the height barrier has been given within this framework as

a function of different metals and/or interlayers. This lack

of systematic analysis for the ideal (abrupt) interface

within a selfconsistent approach is the most unfortunate,

since this prevents comparing -even for the most simple model

(abrupt interfaces)- theory and experiment, a comparison

which could allow getting a better understanding of the

specific effects associated to interdiffusion and reactivity.

Quite recently, we have used a simple pseudopotential

model (Louis and Flores 1981) to explain the main properties

of abrupt and etched interfaces. In this approach, the

crucial quantity is the amount of charge located in the semi-

conductor surface states reacting with the etching agent. The

selfconsistent redistribution of this charge is analyzed as a

function of the interface conditions. The main conclusions
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of this analysis are the following: (i) For clean covalent

interfaces,the junction behaviour turns out to be near the

Bardeen limit; (ii) for etched covalent interfaces, the

surface Fermi ?Pvel may shift to higher (or lower) energies

for electronegative (electropositive) reactants.

In this Report, we have further analyzed clean and

etched abrupt Si-junctions by means of a realistic self-

consistent calculation based on a tight-binding model. The

purpose of this calculation is to obtain the barrier heignt

and the change in the semiconductor surface Fermi level due

to the barrier formation. As mentioned above, we can expect

thait, in this barrier formation, the main effects come from

the interlayer and a few layers of the interface. We think

that tight-binding models are very well suited to analyzing

these local effects. In §II.2.1 and 11.2.2 we give our method

and in §II.2.3 we present our results and give the

discussion.

On the other hand, in §II.3 we analyze non-abrupt

junctions for III-V semiconductors and discuss the conditions

under which the metal and the semiconductor interdiffuse.

11.2. CLEAN AND ETCHED METAL-SI JUNCTIONS

11.2.1. The model

We describe both the semiconductor and the metal

electronic structures by means of a tight-binding method. For

Si, we use sp3-hybrids in each atom, and include interaction

parameters extending up to second neighbours. This is a

standard procedure; details about the parameters used in the

actual calculation are given below (Chadi and Cohen 1975,

Pandey and Phillips 1976, Mendndez and Vergds 1981). As

regards the metal, we use two orbitals in each atom trying

to simulate a broad and a narrow band associated with a s-

and a d-band, respectively (Harrison 1980). This model is

only a rough approximation to the metal structure but, as

will be discussed below, the barrier formation is very little
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dependent on most of the details of the metal density of

states; in other words, this two-orbital approximation to the

electronic metal structure (a noble or a transition metal)

turns out to be sufficient for our purposes.

The crystallographic structure of the clean interface

may be rather complicated. Even for abrupt interfaces, the

metal atoms do not exactly match the Si-structure. For

instance, for Ag on Si (McKinley et al.1979), Ag-atoms form

a monolayer with a three-fold symmetry having a lateral

separation roughly corresponding to that of the Si-Si bond.

A complete calculation of this structure would be rather

cumbersome. However, since the barrier formation seems to be

dppendent only on very general properties of the metal

density of states (see below), we propose to calculate the

metal-semiconductor junction by assuming the metal atoms to

form a (lll)-f.c.c. structure matching the (ll)-Si face. We

have chosen that structure having the lattice parameter, a,

closer to the actual ones of most noble and transition

metals: this yields a = 3.12 A (compare with 3.52 A for Ni

and 4.09 R for Ag). Note that with this parameter there are

three metal atoms in the surface unit cell defined by the Si

structure. It is worth remarking that although the lattice

parameter is different from the actual value for any metal,

the interaction parameters defining the s- and d-bands have

been chosen (see below) to reproduce approximately the

electron density of states of that metal forming the junction.

On the other hand, we assume to have at the interface

the same interaction parameters for the metal and the semi-

conductor as were chosen in the bulk. The clean junction is

formed by introducing some interaction parameters between
the outermost Si-atom and the metal atom sitting just on top

of it; specifically, we assume to have definite interactions

between the dangling-bond Si-hybrid and the two metal

orbitals (see below).

For an etched junction, we introduce an interlayer of

H between the metal and the semiconductor with one ad-atom

in the surface unit cell. For H we use a s-orbital and

introduce definite interactions with the last layers of the
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metal and the semiconductor (see below). The dependence of

the interface properties on the electronegativity of the

atom forming the interlayer (say, Cs or C1 instead of H) hlas

been analyzed by a proper modification nf the atomic

parameters.

Let us now turn to discuss how to get selfconsistency

at both the clean and etched junctions. To this end, it is

convenient to analyze in successive steps the following cases:

clean metal surfaces, clean semiconductor surfaces, metal-

metal surfaces, metal-semiconductor junctions and metal-

interlayer-semiconductor interfaces.

11.2.1.1. Ctean metat sutace,6

In this case, we assume to have until the surface the

same interaction parameters between hybrids defining the

Hamiltonian in the bulk. However, due to the surface

perturbation, it is necessary to introduce a diagonal

perturbation in each layer in order to get selfconsistency

(Desjonqueres and Cyrot-Lackmann 1975). When these diagonal

perturbations are taken zero, it appears in the metal a lack

of charge neutrality which is practically localized in the

last surface layer; then, selfconsistency -which is equivalent

in this case to charge neutrality- can be achieved by a

proper switching on of a diagonal perturbation in the last

surface layer. The effect of this perturbation in successive

.layers is negligible in such a way that, practically, they

keep their neutrality with independence of the surface

perturbation.

11.2.1.2. Clean 6emiconductot su'r6acez

Here, we again consider the crystal extending up to a

surface, with the same interaction parameters as in the bulk,

but with diagonal perturbations switched on, in principle,

in each layer to get selfconsistency. Let us consider a

(111)-covalent face. For this surface, Kleinman (1975) has

shown that the surface band is half-occupied; with this

condition satisfied, there is complete charge neutrality in

-- - -
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the crystal, although there might be no local neutrality in

different layers. This local neutrality can be achieved by

introducing appropriate diagonal perturbations in each

layer as was the case for the metal. In similarity with this

case, a diagonal perturbation in the last surface layer can

be adjusted to give neutrality in the same layer, and this

gives automatically -due to the complete neutrality of the

crystal- neutrality, in practical terms, in tle second and

further layers (Djafari-Rouhani et al.1979). It is of

interest to remark that the condition of local neutrality

for the last surface layer is practically equivalent to the

following condition: charge neutrality in the first sublayer.

This can be understood in the following way: for a semi-

conductor, the surface perturbation produces an important

transfer of charge between the last two layers and leaves

practically unperturbed the rest of .-i crystal; then, with

a proper adjustment of a local perturbation at the last layer,

this transfer of charge can be reversed and local neutrality

can be obtained. From a different point of view, this

transfer of charge is obtained by shifting the surface band

energy and moving the surface Fermi energy.

11.2.1.3. Metat-metat interdace

For this case we can also assume to have localized

diagonal perturbations in the last layers of both metals. On

the other hand, a transfer of charge between these two

layers must appear in order to create an electric dipole

which equalizes the Fermi levels of both systems (other

layers keep their neutrality). Then, selfconsistency can be

achieved by adjusting these charges (of opposite signs) to

the values determined by the difference between the Fermi

levels of both metals, by means of two perturbations

localized at the two last layers.

11.2.1.4. Meta-zemiconductot setZcone6iztency

We can now discuss how to get selfconsistency at the

clean metal-semiconductor junction. In similarity with the
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metal-metal interface, we can expect to have diagonal

perturbations and a transfer of charge at the two last layers

of both crystals; at variance with the metal-metal interface,

these charges, however, are not determined by the condition

of equalization of both Fermi levels, since the metal Fermi

level can be freely moved across the semiconductor gap.

Accordingly, in comparison with the previous case (§II.2.1.3),

we have a new freedom in the problem: the relative position

of both bulk bands. This freedom -due to the existence of the

semiconductor gap- is compensated by a characteristic of the

same semiconductor surface: the strong coupling between the

last two layers of the crystal (see §11.2.1.2). We shall

immediately see how this characteristic allows us to

introduce a new condition which completely determine our

problem.

According to this discussion, we have three parameters

which have to be determined to achieve selfconsistency at the

metal-semiconductor interface: the two diagonal perturbations

at the last layers of the metal and the semiconductor, and

the induced dipole, D, between both crystals. These

parameters are determined by the following conditions: (i

the first one is given by the assumption that the interface

transfer of charge must be localized in the two last layers;

this is a condition which is practically satisfied for the

metal (see §11.2.1.1). For the semiconductor, however, the

first sublayer is strongly connected with the surface layer.

Accordingly, the condition of localization of the transfer of

charge to the surface layers give the following equation:

n(1) = 0

which expresses a condition of charge neutrality at the first

semiconductor sublayer.

(ii) The second condition is given by the whole charge

neutrality. This yields:

6_(0) + 6nM() = 0 (11.2)
sc ,
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where superindex (0) stands for the surface layer.
(iii) Finally, the transfer of charge between the

metal and the semiconductor, measured by 6nm = -6n ) , give
the induced dipole, D, which is proportional to

6n(0 ) and to the distance, d, between the metal and thesc

semiconductor surface layers:

D = d6n (o)  (11.3)sc

Eqs.(II.l), (11.2) and (11.3) give the three conditions

determining the three parameters (0)s V() (the two diagonal
sc M

perturbations at both surface layers) and D. Eq. (II.1) is the

new condition associated to the semiconductor characteristic

commented on above. (For the metal-metal interface, eq. (II.1)

disappears while D is given by the difference between both

Fermi levels). It is of interest to note that eq. (II.3) gives,

in any case, a very small value for 6n (0) since for a
distance of, say, d = 2.69 A (Ag-Si case) and 6n(0) = I we

obtain D = 37.9 eV, a very high value. Then, in a first

approximation we can substitute eq. (II.3) by

6n(0 ) = 0 (II.4)se

We have now in this approximation the following three

conditions:

6n (0 ) = 6n( I ) = S n(0) = 0 ; (11.5)
sc ~sc

let us call Vsc, V0 and D to the values of the three

parameters V0), V 0 and D, as obtained from conditions

(11.5). This solution gives a barrier height, pbn' and a

Fermi level in the semiconductor gap defining the so-called

charge neutrality level. (Rhoderick 1978, Tejedor et al.1977).

The general solution for the conditions given by eqs.

(11.1), (11.2) and (11.3) is close to the one obtained with

eq. (II.5), and it can be obtained from the last one by a

linear perturbation of the parameters ;(0) ;(0) and B. Thesc M
idea is to obtain the linear modifications in the charges
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(0) (1) (0)6nsc , nsc and 6 m as introduced by small changes in

V(0), i(0) and 5. Thus, we write:
sc M

anM n (i ) 6( +6n (i ) 6(0) 1 + 6D
n i  -(0) sc o+ M + (11.6)

sc M

where6n(i) stands for an (0), 6n ( I ) and an ( 0 )  and the
coefficients 6nW/6V , 6n(i)/6V(0) and 6n(i)/6D are

~Sn M /S
obtained by small changes of (0) V( 0 ) and 6D in the solution

sc ItiM

obtained with conditions (11.5). It is now an easy matter to

obtain Vsc0 , 6VM0 ) and D by imposing the conditions given

by eqs.(II.1), (11.2) and (11.3). This procedure yields the

following equations:
(in an anj
sc 6V(0) + sc + sc D 0 (II.7a)

SOO)~ sc + m 0]sc M

n(0) n(0).(0
sc (0) sc 6V ( 0 ) + n 6D - 4n ( 0 )  (D +6D)
( s sc + -() M 6 sc cd (II.7b)

6sc 14 6

an(0) s a) n( 0) an( 0) M0) -n 0

(0) (00)) + M6 D E a sn .(II.7c)

VscV 6D

In our calculations (see below) we have found that

n(1) -n(0)

6v 0  6v 0

in such a way that eqs. (II.7a) and (II.7b) can be now used to

obtain 6V( 0 ) and SD:
Sc

nsc 0 (0) + sc 6D 0 (II.8a)

(0) sc -5

s6D
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6n (0) (0) 6n( 0 ) D+6D
Sc 6V ) + S 6D - (II.8b)

sc 65 d
Sc

Note tha'- for 5/ad - 0, we recover the solution given above:

6Vsc = 6D = 0. In general, these equations give 6D, the

change in the height barrier as a function of 5 and other

parameters. Note that D = DM X - @bn, where 4M is the metal

workfunction and x the semiconductor affinity.

Thus, we write:

6DD/ d S[P -6D=~1 6n(0 )  6n( 1 )/6D 6n(0 )  - S[ M- X-bnl. (11.9)

sc -sc + sc
6( 6n (1)/6V(0 6D ad

Apparently, this equation defines a linear relationship

between 6D, the change in the barrier height, and (@M-K);

note, however, that S is, in general, a function of the

interface properties as defined by the metal and semiconductor

densities of states. Once S is obtained from the actual

properties of the interface, eq. (9) gives the change in the

barrier height with respect to the charge neutrality level

and the final interface Fermi energy.

11.2.1.5. Metat-inte taye&-semiconductot seton.istncy

Let us now discuss how to get selfconsistency at the

metal-interlayer-semiconductor junctions. Comparing with the
metal-semiconductor interface we have i new freedom in the

junction: the one associated with U.a interlayer. Thus, we

have to determine selfconsistently its charge, nH, and its

mean level, EH'
Accordingly, we have in this junction four parameters

to be determined selfconsistently: the two diagonal

perturbations at the last layers of the metal and the semi-

conductor, VM0 ) and V(0) , the induced dipole, D, between both
M Sccrystals, and the mean atomic level for the interlayer, EH -

The conditions determining these parameters are the

following: (i) as in the metal-semiconductor junction, we
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impose charge neutrality at the first semiconductor sublayer:

6n(1) = 0 . (11.10)
sc

(ii) The condition of whole charge neutrality yields the
following equation:

6n(0) + n + (n(0) = 0(.)

sc M

(iii) On the other hand, the induced dipole, D, is determined

by 6nH and 6n (0), according to the equation:

D = {d6n ()+ d'(n H }  (11.12)sc d'S}

where d (d) is the distance between the semiconductor surface

layer (interlayer) and the metal surface layer (compare eqs.

(11.12) and (11.3).

(iv) Finally, we need a selfconsistent equation for the

mean atomic level, EH. This can be obtained by using a Hartree

model; within this approximation, the mean atomic level

depends on the electrostatic potential induced in the

interlayer and on the electrostatic repulsion between

electrons of different spins inside the atom. Thus:

E= E(0) a(d-d') 60n) + 1 U6n . (11.13)
H H sc I H

In this equation, E(0 ) is the mean atomic level for the
H (0)isolated atom, (d-d')6n sc is the electrostatic potential

induced at the interlayer as measured from the semiconductor,

and +. U6nH gives the mean intraatomic repulsion (6nH =

1 2 H(0)U6ni). Note that a reasonable approximation to EH is to

take for it the mean value of the ionization and affinity

levels for the ad-atom.-

Eqs.(II.10), (11.11), (11.12) and (11.13) give the

(0))

forconditions which determine the four parameters V.0 ,

V ( ) D and V It is worth noting that, in similarity with
ac IH*

the metal-semiconductor interface, condition (11.12) can be

substituted by the following equation:



50

6D = - (I. 15)

where, as discussed above, 4bn is the charge neutrality

level of the etched junction and S' a paraneter depending on

the interface properties.

11.2.2. Method of calculation

In order to obtain the charge and the density of states

associated to a given layer, we have calculated the Green

function, G, defined by the following equation:

(w-Fi)-G = 1 (11.16)

where w is the energy, H the Hamiltonian written in a tight-

binding basis, and T the unit tensor. In our representation,

we write H and in a basis defined by a superlayer number,

m, an orbital index, a, and a momentum, K, parallel to the
surface and belonging to the first Brillouin zone of our two-

dimensional surface lattice. Let us call a the number of

independent orbitals in each superlayer.

In this representation, a matrix element of, say, the

Green function, G, takes the form G mc,m , (K). In the

following, instead of using this notation, we shall write

G () or G m( understated), in such a way that an

element ((%,a') of the matrix G (K) is G (K)"Am,m' am,z m'
Moreover, in order to simplify the discussion, we consider

the case of a clean semiconductor surface. Later on, we shall

see how to analyze an interface.

For a clean semiconductor surface, we write equation

(11.16) in the tight-binding representation by taking the

elements (cm,ci'o), where o stands for the surface superlayer;

this yields:

wm,o mHm, m ,o m,O

Let us now assume that the interaction between orbitals

extend up to second neighbour superlayers; with this particular
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case we try to show how to generalize the procedure to long

distance interactions. Then, eq. (II.17) can be explicitely

written as follows:

[-HcG0, 0 - H - H0I (II.18a)" 02-O' -koi1 ' Z"O",o = o92T,0b

-H2,o'o,o - H2,1"*1,o + ['-9 2 2 ]'*2, 0 - QH2,3 , -

- H *G 0 (II.18c)
A%4 4,0

-H "G + Cw-Hm]"G 0,Hm, m-2 "Gm-2,0 Zm,m-i ,t-' Z cm

- Hm, m+ m+,0 - Hm,m+2 m+2,0 0 (II.18d)

where the different interactions between superlayers m and

m' are given by Hm,m, and use has been made of the fact that

interactions extend only up to second neighbours superlayers.

It is convenient to remark at this point that a superlayer,

in the language used here, may be built up by several

crystal layers; the number of crystal layers forming a

layer is given by that number allowing us to write eq. (II.16),

well inside the bulk (Lee and Joannopoulos 1981), in the

form given by eq. (II.18d). For Si, a superlayer has two

crystal layers.

For an ideal structure,

H = H(m-m') (II. 19a)

and

H n(m-m') = H ('-m) (II.19b).a,8 8,
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For simplicity we limit our discussion to the case in

which for the third superlayer (eq. (II.18c)) we recover the

general equation (II.18d). (In our second neighbours

approximation, this implies an ideal unrelaxed surface). A

more general case can be readily obtained. For the case of

an ideal unrelaxed surface, eq. (II.19a) can be used for all

the matrix elements H appearing in eqs.(II..18).

In the literature, these equations have been solved by

the transfer-matrix method (Falicov and Yndurain 1975, Louis

and Yndurain 1977, Verg6s 1978), by reducing them to a

finite system by taking a slab (Pandey and Phillips 1976),

or by other methods (Lee and Joannopoulos 1981). In our

procedure, we have followed decimation techniques as applied

in the renormalization group method (Goncalvez da Silva and

Keiller 1981). The advantage of our procedure is its quick

convergence and its saving of computer time.

It is now convenient to rewrite eqs. (II.18) in the

following way:

[W:(O) -H: [:0'I -H(23 H (G120
[00 ~~~=2 0,0I  0 01 :

-H(l) ) G -H(l) - H( G 01

(11.120)

-H I)--(1) w-H(0)

(t o ,0 ,.

0-H(2) G -H<l) G-H(O)

€) -Gm+3,0

m even, or equivalently, with an obvious notation:

W. 10 + 1T = [ 1I (II. 22a)

T 2+ + 4M + Tj= 0 .(II. 22b)
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In these equations, 0,2,4,..., are the numbers associated

to the different supe4layeru formed by the superlayers (0,1),

(2,3), (4,5),... and so on. Note that the number of super-

layers defined inside each 6upettayer is related to the
order of the interaction (second order here). According to
decimation techniques, we proceed in successive steps by
eliminating the even Green functions associated to

superlayers 2,6,10,..., in eqs.(II.22). Thus, in a first
step we consider the following equations:

'q0 + ' % 4 + 0 (II. 23a)

2"4 + W'.6 + T'4 = 0 (II.23b)

T2 58 + +V1 ' W 12 2 0 (II.23c)

and write

92=- t -V91w [Z + T4j* (II. 24a)

= -W1 [ 2 4 + Ti'8J (II.24b)

910 = - 2W[28 _1 + 1 (II.24c)

Now, these equations are used to eliminate 52' 6,

JOS..."from eqs.(II.22). This procedure yields

-1 -2J*O -T1J4 = (II.25a)

- T 1 ) .8 = 0 (II.25b)

-1 4 4~r - 1 W 1 f1.4 4_ -1

- 2L -- j*W t 12+ 0 f2
Z1.1 12 0(II.250)
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These equations coincide with eqs. (11.22) by an

appropriate renormalization of the different matrixes. Thus,

with the following definitions:

W' = - W *. (II.26a)

W' = W - T I (II.26b)-b ft 02' A-I  "f

W (II. 26c)

T -2.W-T 2(II.26d)

we recover formally eqs. (II.22) with new renormalized

parameters. For instance, i and measure the effective

interaction between renormalized superlayers 0 and 4, 4 and

8, and so on, while W- ,i.W-.t 2 ] can be defined as the

effective natrix of (w-H) for layer 0 and

- l-- 2-W- 2-- the same effective matrix for

superlayers 4,8,

Now, the procedure can be iterated, and at any step,

say p, we obtain the following matrixes as a function of tne

ones obtained in step (p-i):

(p) W (P-l) (p-1) [w(P-)-i .(p-i) (II.27a)Ws fs "I ab ""2

oko1 Lb0* b%
ote1 t t o t s c d ( ) an(IId27b)

( ) T(p-l).[j6( l l.(p-l) (11.27c)

-P (P-1)3-1. (-1

Note that for the second step, T ( 2 ) and ( 2 ) give the

effective interaction between renormalized superlayers 0 and

8, 8 and 16, and so on, while T3) and T 3 ) measure the

effective interaction for superlayers 0 and 16, 16 and 32,...

In general, after p steps, . and give the effective

interaction between superlayers 0 and 2p+i, having
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renormalized out 2P superlayers. This is the important point

of the procedure followed in this paper, since the number

of renormalized superlayers grows with an exponential power

of the number of steps. On the cther hand, we can expect

both t( p ) and -r p ) to decrease, for any value of w, with

the increasing number of steps; this is a conclusion that

can be reached on physical grounds by noting that the

effective interaction between superlayers musJ'be small

when they are far apart. Let us assume that, after p 0 steps,

ri(P0) and 1(P0) are negligible. Then, eqs. (II.25) reduce to:

(s " = (II.28a)

(PO) = 0 (II.28b)rb "1P0 + I )

It is obvious from eqs. (II.27) that when Ti and T(P)

are small enough, a new step produces no change on the

values of W(P0 and po); the physical meaning of this

result is clear: the surface and bulk superlayers are

practically decoupled. Then,W(P0) and W p 0 ) give the
effective matrixes of (w-H), for the surface and bulk

superlayers, respectively.

In practical terms, T{P) and xr p ) become small as a

function of the chosen degree of accuracy for our effective(p0) (p0)
Hamiltonians. Accordingly, we neglect T1  and r when,

for step (p0+l), the differences between the values of
t o (PO) (p0) (p0+l) (po+l)

every term of (or b ) andW (or b ) are
smaller than a given number, for any frequency. This is

equivalent to say that, to a given accuracy, a slab of 2p
0

superlayers is large enough to decouple both surfaces.

Note that our results, after p0 steps, are equivalent to

the ones given by the matrix transfer method after 2 
P 0

steps. (PO a (pO)

Vs and b give the effective Hamiltonians for
the isolated surface and bulk superlayers, respectively,

and allows us to obtain, for instance, the density of

states not only for the surface but for the bulk too. As

- .
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regards W , this matrix gives for Si an effective

Hamiltonian in a basis which includes not only the dangling-

bond orbital, but the 8 orbitals associated to the last

two layers.

A similar argument can be applied to obtain the same

surface matrix for the metal. In this case, W is a (6x6)

matrix, as corresponds to two orbitals per atom, three

atoms in the surface unit cell, and a nearest neighbour

interaction.

Once that W has been determined for both the metal

and the semiconductor, we analyze the clean junction by

introducing the corresponding hopping interaction; in this

way, the clean interface is analyzed by inverting a 14x14

matrix. As regards the etched junction, we have one more

atom in the surface unit cell, and thus we obtain for this

case a 15x15 effective Hamiltonian.

From the point of view of the actual calculation it

is worth commenting three points: (i) as is well-known, in

all the matrix-transfer methods a finite broadening must be

introduced to get meaningful results. This amounts to

substituting w by w+iS, where 6 is a quantity related to

the degree of accuracy accepted for the calculation. In our

case, we have taken 6 = 0.05 eV, in such a way that the

accuracy of our results can be expected to be better that

0.1 eV. (ii) On the other hand, in order to get the same

accuracy in the effective Hamiltonians, Ws, we have to give

6 steps in our calculation (p0 = 6). (iii) Finally, let us

comment that in order to obtain averages in the surface

Brillouin zone, we have taken 45 points in the irreducible

part of it (Chadi and Cohen 1974).

11.2.3. Results and discussion for the clean metal-

. semiconductor junction

In our actual calculation we have adjusted our

parameters to a Si-Ag interface. For this case, the metal

Fermi level lies in the s-band; however, in order to analyze

the dependence of the junction properties on the metal
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density of states at the Fermi level, we have used the same

parametrized metal band structure, but have changed its

Fermi level position.

In Table I.1 we give the different parameters used to

calculate the Si-band structure: we have considered the

three different cases given by Pandey and Phillips (P-P)

(1976), Chadi and Cohen (C-C) (1975) and Men6ndez and

Verges (M-V) (1981). P-P and C-C parameters give a very good

valence band description. However, a free semiconductor

surface calculated with the P-P parameters has its Fermi

level almost coinciding with the valence band edge, while for

the C-C interactions there appears a too much wide thermal

gap. With the M-V parameters we obtain a better description

of the main gap and the electron surface states, although

the valence band is not so well described as with the P-P

and C-C interactions.

As regards the metal, we have used the following

parameters adjusted to give an appropriate density of states

for Ag (Harrison 1980):

V = -1.00 eV, Vsd = -0.25 eV, Vdd = -0.25 eV,

Sd-e s = -3.00 eV;

here Vss, Vsd and Vdd are the interactions between the

nearest neighbours s-s, s-d and d-d orbitals, respectively,

while £d and Es are the d and s orbitals levels.

The junction is formed by introducing a given

interaction between the Si-dangling-bond hybrid and the

orbitals of the on the top-Ag atom. We have chosen the

parameters defining these interactions by taking a geometrical

mean value between the interaction of two hybrids forming

a Si-bond and the s-s (or the d-d) interaction for the

metal. In Table 11.2 we"give the values used in the

calculations for the different semiconductor models: a

second set of values defining the interactions (the smaller

ones in Table 11.2) have been used in order to analyze the

dependence of the barrier properties on the strength of the

metal-semiconductor bond.
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TABLE 1I.1.- Interaction parameters used in the calculation

of the Si-band structure. P-P: Pandey and

Phillips. C-C: Chadi and Cohen. M-V: Men~ndez

and Verges (in eV). V,1 V2 , V3 F V4 , V5 define

the first-neighbours interactions in C-C notation;

(ppO) 2 and (pprr)2 define the (P-P) second

neighbours interactions.

P-P C-C M-V

V1  -1.10 -1.80 -2.04

V2  -4.10 -5.85 -4.90

V3  -0.55 -0.20 -0.43

V4  0.24 0.85 0.24

V5  -0.27 -0.60 0.57

(PPa)2 0.58 0.00 0.60

(pp") 2  -0.10 -0.36 0.02

TABLE 11.2.- Interaction between the dangling-bond hybrid of

Si and the on the top-Ag atom orbitals. VHS and
VHd refer to the s and d orbitals respectively,
while (a) and (b) stand for the weak and strong

coupling (in eV).

P-P C-C M-V

(a) -1.50 -1.23 -1.50
VHS (b) -2.50 -3.42 -3.00

(a) -0.50 -0.35 -0.50
VHd (b) -0.70 -1.02 -1.15
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In Figures I.1 to 1.6 we give the density of states for

the semiconductor surface layer, as calculated with the

conditions given by eq. (II.5) and the P-P and the C-C

parameters, for the following cases: (i) free surface;

(ii) Ag-Si interface for weak-semiconductor-metal coupling

(see Table 11.2); (iii) same as (ii) for strong coupling.

These figures have been calculated by assuming that the Fermi

level in the metal lies in the d-band; for this case, the

following general results of our calculation are better

illustrated: (a) the Fermi level at the junction, as

measured from a fixed point in the semiconductor bulk, moves

towards the valence band for increasing values of the metal-

semiconductor interaction; (b) the density of states at the

Fermi level decreases for an increasing coupling between the

metal and the semiconductor; (c) as far as the density of

states in the main gap decreases with the metal-semiconductor

bond strength, we find a corresponding increase in the

density of states of the valence band near the top band-edge.

A word of caution must be put here. For the P-P

parameters, the Fermi level at the free semiconductor surface

practically coincides with the valence band edge. As the

junction is formed, the Fermi level enters the valence band;

then, the procedure followed in this work is not fully

appropriate since selfconsistency cannot be achieved in the

inner semiconductor layers. However, we have solved tiue

junction for this case by looking for a selfconsistent

solution only in the last two semiconductor layers, and

neglecting the lack of neutrality which must appear in the

inner layers. For this reason, the results obtained with the

P-P parameters must be taken only as indicative.

Due to this comment and to the fact that the C-C

parameters give a too wide semiconductor gap, we consider

that the results obtained with the M-V parameters, as regards

the change in the Fermi level, 6EF, between the free surface

and the junction and S, are the best ones given by our

calculations, For the case of a specific Ag-Si junction (with

the metal Fermi level lying in the s-band) we have obtained

the following results:
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U9'

Density of states for the semiconductor surface layer.

Free surface and P-P parameters. EF = Fermi level. EC
Conduction band edge. EV Valence band edge.
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6E = 0 ± 0.05 eV, S = 0.07 (weak coupling) ,

and

6E = -0.15 ± 0.05 eV, s = 0.14 (strong coupling).

According to the way the interaction parameters for

the metal-semiconductor coupling were chosen, we expect the

actual junction to be closer to the strong co-pling case.

The effect of the metal density of states at the Fermi

level on the junction properties has been analyzed by

assuming, in a second case, that the metal Fermi level lies

in the d-band. With the M-V parameters we have obtained the

following results:

I F = -0.35 ± 0.05 eV, S = 0.04 (weak coupling)

6EF = -0.60 ± 0.05 eV, S = 0.11 (strong coupling).

These results show an important dependence of 6EF and

S on the metal density of states at the Fermi level,

although the details of this density around this level are

unimportant.

Coming back to the Ag-Si junction, note that the

barrier height is a function of the charge neutrality level,

the slope S and the metal workfunction t M" As regards the

charge neutrality level, we take into account the

experimental evidence (Margaritondo et al.1975) that EF, at

the free semiconductor surface (a 111-7x7 reconstruction),

is 0.55 eV above the valence band top. By using the values

obtained for the case of strong coupling interaction we

find that the charge neutrality level is 0.4 ± 0.05 eV above

the valence band top. With this value and PM(Ag) = 4.4 eV

we obtain the following barrier height:

Obn (Ag-Si) = 0.66 ± 0.05 eV

a value to be compared with the experimental barrier height

of 0.79 eV (Rhoderick 1978). This result shows that, indeed,

the metal-semiconductor coupling is close to the strong
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coupling case, and that the actual parameters defining this
coupling must be even a little greater.

It is of interest to consider now the general

conclussions that can be reached from the results given above

for SEF and S as a function of the metal-semiconductor

coupling strength and the metal density of states at the

Fermi level. Our results show that EF increases with both

the metal-semiconductor coupling and with the density of

states at the metal Fermi level. Thus, we can expect 6EF to

be close to zero for metals of low electronegativity, for

which the metal-semiconductor coupling must be small, and of

low electron density; for these cases the barrier height

must be a little smaller than 0.55 eV (this is the barrier

height for a free surface). On the other hand, SEF may

present important changes, up to 0.5 eV, for metals of high

electronegativity and high electron density. In general,

these comments seem to be in qualitative agreement with the

experimental results collected for the metal-semiconductor

junction (Rhoderick 1979).
As regards the change in the Fermi level, 6EF, induced

by the barrier formation, it is worth commenting on the

experimental evidence given by Margaritondo et al. (1976). By

analyzing the cases of Al, Ga and In on Si, those authors

have shown that, with the barrier formation, the interface

Fermi level shifts towards the valence band in quantities of

0.20, 0.30 and 0.40 eV, for Al, Ga and In, respectively.

Considering that these metals have a density of states at the

Fermi level between the two cases analyzed above (with the

Fermi level lying in the s- or the d-band), we conclude that

the observed shifts in the interface Fermi level are in

reasonable agreement with our previous calculation. Moreover,-

according to our previous discussion, we expect the

differences between the three metals (Al, Ga and In) to be

related to the different bondings between each metal and the

semiconductor. In this sense, note that the Pauling electro-

negativity takes the values 1.5, 1.6 and 1.7 for Al, Ga and

In, respectively, suggesting that, indeed, the increase of

electronegativity is related to a stronger coupling and to an
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increase of the barrier height.

On the other hand, let us comment that most silicides

seem to present an abrupt interface. Then, these junctions

can by analyzed in the terms presented in this Report. The

crucial parameters characterizing the interface are the

distance, d, between the last layers of the semiconductor

and the metal, and the strength of the metal-semiconductor

bond. Due to structural and bonding similarities (Ho et al.

1979), we can expect these junctions to have practically the

same charge neutrality point and the same value of S. This

suggests that these junction6 must show a linear relationship

between the height barrier and the workfunction of the

silicide metal. This seems to be in reasonable agreement with

the experimental evidence (Froeouff 1980), although

complementary information on the silicide workfunction would

be necessary to reach a definite conclusion.

Let us finally make a commment on the barrier height

formation: for an abrupt interface, the barrier height is

determined by the density of states near the Fermi level in

the semiconductor gap. For a clean surface, this density is

high and is determined by the surface band; as far as the

metal-semiconductor coupling is switched on, this density of

states decreases, an effect induced by the broadening of the

surface states of the free semiconductor. This process

explains why the Fermi level for the junction almost coincides

with the Fermi level for the free surface, a result stressed

by other researchers (Tejedor et al.1977, Louis and Flores

1981).

In conclusion:

(a) The Fermi level at the junction -as measured from a

fixed point in the semiconductor- moves towards the valence

band for increasing values of the metal-semiconductor

coupling.

(b) The density of states at the Fermi level decreases

for an increasing coupling between the metal and the

semiconductor.
(c) As far as the density of states in the main gap

decreases with the metal-semiconductor bond strength, we
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find a corresponding increase in the density of states of

the valence band near the top band edge.

(d) The effect of an increase in the metal density of

states at the Fermi level on the junction properties is similar

to an increase in the metal-semiconductor coupling.

11.2.4. Results and discussion for the metal-interlayer-

semiconductor junction

Let us turn our attention to etched junctions with a

monolayer between the metal and the semiconductor. In our

calculation we have assumed to have one ad-atom on top of the

outermust Si-atom, and the same structure for the metal as

the one discussed above in §II.2.3 with one metal-atom on top

of the ad-atom. For the ad-atom we have assumed to have a

s-orbital per atom, a model appropriate for a H or Cs

monolayer, while for the metal we have used those parameters

given in §11.2.3 and adjusted to a Ag-case.

The Hamiltonian for the interface is defined by a

number of parameters giving the coupling between the ad-atom

and the orbitals of the last layers of the metal and the

semiconductor. For H we have followed Pandey (1976) and

taken the following parameters for the Si-H interaction:

VSi-H -3.57 eV
ss

(11.29)
9Si-H
s = -H -2.76 eV

where Vss and Vspc give the interactions between the ad-atom

and the s and p orbitals of Si, respectively. For the Ag-H

coupling, we need the interactions between the ad-atom and

the s- (A g -H) or d-orbitals ( eg-H); these parameters havess sd
been obtained by averaging the Si-H interactions with the

Ag-Ag interactions, VA g-A g andAg-Ag above (§11.2.3).
and Vdd gve

This yields:

VAg-H = -2.3 eVss
(11.30)

VAg-H = -1.0 eV
sd
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On the other hand, E0 , the mean atomic level for the

isolated atom, has been adjusted to give an appropriate

solution for the case of a H-monolayer adsorbed on a clean

111-Si surface (Appelbaum and Hamann 1975, Pandey 1976). In

Figures 11.7 and 11.8 we give the density of states in the

adsorbed monolayer and in the last semiconductor layer as

obtained for

E= -5.4 eV (11.31)

by means of a selfconsistent calculation. This density of

states shows a good agreement with other calculations (Pandey

1976), and it corresponds to a solution for which there is a

small transfer of charge, around 0.01 e/atom, from the

monolayer to the semiconductor surface layer; this is in

agreement with the experimental evidence (Ibach and Rowe 1974).
Note that for the monolayer case, we get selfconsistency by

means of an equation similar to (11.13); in this equation, U

has been taken equal to 8 eV, following many other

chemisorption analysis for H (Baldo et al.1983, Newns 1969).

The values given in (11.29), (11.30) and (11.31), and

the parameters introduced in 11.2.3 for the metal and the

semiconductor, define our model Hamiltonian for the H-

interlayer.

At this point it is convenient to remark that Figures

11.7 and 11.8, as well as all the calculations presented in

this paragraph for the metal-interlayer-semiconductor junction,

have been obtained by using the semiconductor parameters

given by Pandey and Phillips (1976) and collected in Table

II.1. In spite of the comment made in §11.2.2 for this case,

where we stressed the difficulties associated with the fact

that the Fermi level for the interface lies in the

semiconductor valence band, we have checked that all the main

results related to changes in the Fermi level as obtained

with the P-P parameters are in good agreement with the

results as calculated with the M-V parameters (a case giving

a better description of the surface states position).
As regards the Cs-interlayer, we have determined the
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parameters defining the interface in the following way:

firstly, we have obtained the effective VC s - Cs interactionss

by means of the procedure given by Harrison (1980). Then, we

have obtained the different Si-Cs and Ag-Cs interaction

parameters by averaging that effective interaction, V
C s- Cs

ss
with the Si-Si and Ag-Ag interaction parameters. This

procedure yields:

V A g - Cs  -1.5 eVss

VAg-Cs -1.6 eV
sd

Si-Cs (11.32)V~i c = -1.25 eV
ss

VSi - Cs = -0.92 eVspa

On the other hand, (0) has been taken equal to the average' Cl

of the affinity and the ionization levels for the free atom:

E (
-

) = -2.0 eV (11.33)Cs

Finally, for Cs, the intraatomic interaction, U, has

been taken equal to 1.5 eV, close to the difference between

the affinity and the ionization levels.

In order to analyze the effect of C1 on the junction

properties, we have adapted the previous model, keeping only

a s-atomic orbital, but introducing stronger interactions

with the metal and the semiconductor. To this end, we have

practically scaled the H-Si and H-Ag interactions with the

Cl-Si and Cl-Ag ones, by means of the bond energies for H

and Cl with Si and Ag (Pauling 1972). This yields:

VAg-Cl = -4.5 eV

VAg-C1 -3.5 eV
sd

(11. 34)
VSB-Cl = -2.45 eV
Vss

VS - C = -1.41 eV.
spa
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Moreover, following the criterium given above for Cs,

we have selected the following parameters:

E (0 ) = -8.3 eV
Cl

(11.35)
U= 7 eV

which completely determine our interface model Hamiltonian.

One more comment must be made before discussing our

results: selfconsistency has to be reached by using eqs. (II.10),

(11.11), (11.12) and (11.13). However, in order to apply

eq. (II.13) we need the distances d and d' between the last

metal layer and the interface semiconductor layer or the

ad-atom interlayer, respectively. For H and C1 we can assume,

as discussed above, that the ad-atom is located on top of

the outermost Si-atom (Pandey 1976, Schluter and Cohen 1978),

and the distances d and d' can be approximately obtained by

adding the covalent atomic radii. However, for Cs a more

appropriate position would be for the ad-atom to sit above

the center of three Si-atoms. Then, the distance between the

interlayer and the last semiconductor layer, (d'-d), would

be substantially reduced. This fact can have considerable

effect in the final selfconsistency: we shall discuss its

implications later on. (In spite of this comment, for the

sake of simplicity, we shall calculate the Cs-interlayer case

with a model Hamiltonian appropriate for an ad-atom adsorbed

on the top position; the effect of the adsorption site will

be only simulated by changing the distance (d'-d)).

In Figures 11.9 and II.10 we present the density of

states in the interlayer and the last semiconductor layer as

calculated for the Si-H-Ag junction. In Figures II.11 and

11.12 we give the same quantities for the Si-Cs-Ag junction,

by assuming no transfer of charge from or to the interlayer

(see below).

Our calculation shows the following general results:

(i) The parameter S', giving through eq. (II.15) 6D, is

practically zero in all the cases (H, Cs and Cl). Then, the

Fermi level for these junctions practically coincides with
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the charge neutrality level.

(ii) The charge neutrality level can be obtained in

two steps. In a first step, this level has been obtained by

assuming no transfer of charge from the ad-atom to t-he
semiconductor: this is practically the case for H. In a

second step, the charge neutrality level is modified by the

transfer of charge from (or to) the interlayer, due to the

low or high ad-atom electronegativity.

For H, with an electronegativity similar to Si and Ag,

there is practically no transfer of charge between the

interlayer and the semiconductor. Then, the charge neutrality

level is given by the first step. Our calculation shows that

this level is 0.13 ± 0.05 eV below the Fermi level for the

free surface. It is worth remarking that this level almost

coincides with the one obtained for the clean Ag-Si junction.

We conclude that for H, the interface Fermi level is very

close to the one obtained for the clean Si-Ag junction.

For Cs, there is an important transfer of charge from

the ad-atom to the semiconductor. The first step mentioned

above gives a charge neutrality level located 0.07 ± 0.05 eV
below the free surface Fermi level. On top of this, the

charge neutrality level shifts to lower energies due to the

transfer of charge from the ad-atom to the semiconductor.

Our calculation shows that this shift 6E F is related to the

transfer of charge, Ancs, by the equation:

SEF = 0.4 AnCS (11.36)

with 6EF given in eV and An Cs in units of electronic charge

per atom. Now, it is important to note that An Cl is very

dependent on (d-d'), the distance between the ad-atom

interlayer and the last semiconductor layer. For a position on

top of the Si atom, we have estimated Ancs to be around 0.16

units of electronic charge. However, for'a site above the

mid-point of three Si-atoms, we have estimated that AnCs must

be around 0.5 units of electron charge. For the two cases,

the charge neutrality level shifts towards lower energies in

0.08 eV and 0.25 eV, respectively. Considering the second
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case to be the most likely to happen, we obtain a Fermi

level for the Si-Cs-Ag located 0.32 _ 0.05 eV below the Fermi

level for the free surface, and 0.17 _ 0.C5 eV below the

Fermi level for the clean Si-Ag interface.

For Cl, we find an important transfer of charge to the

ad-atom. With the first step (no transfer of charge), the

charge neutrality level is located at 0.17 ± 0.05 eV below

the Fermi level for the free surface. In the se'cond step, we

find that the charge neutrality level shifts to higher

energies; 6EF is related to AnC1 by the equation:

6EF = 0.6 AnCl , (11.37)

with An Cl measured in units of electronic charge per atom.

With the on the top position for Cl, we have estimated that

AnCl 0.14, and 6EF = 0.08 eV. Accordingly, we obtain a

Fermi level for the Si-Cl-Ag junction located around

0.09 ± 0.05 eV below the Fermi level for the free surface and

0.04 _ 0.05 eV above the Fermi level for the Si-Ag junction.

Summarizing the last results: the Fermi level for the

Si-Cs-Ag, Si-H-Ag and Si-Cl-Ag junctions have been obtained

at energies: -0.17 ± 0.05 eV, 0.02 ± 0.05 eV and

0.04 ± 0.05 eV, respectively, referred to the Fermi level for

the Si-Ag junction.

The main changes in the Fermi level (and the

corresponding changes in the barrier height) are induced by

ad-atoms of very low affinity. This is mainly due to the fact

that Cs has been supposed to sit on the mid of three Si-atoms.

In other words, had we assumed Cl to sit on the same

position, we bad obtained a greater shift, around 0.2 eV, in

the Fermi levEl but towards higher energies. This conclusion
seems to be in agreement with the results obtained by

Mottram et al. (1975) for an interlayer of 0; in this case,

O sits in the iid-position and induces a shift in the

interface Ferm energy of 0.2 eV towards the conduction band.

(iii) Fir ally, we have analyzed the effect of the metal

density of states at the Fermi level on the previous results
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by changing the Fermi level position in Ag. For the case in

which the Fermi level was located at the d-band, we have

found no significative change in our previous conclusions.

Thus, the barrier height for the interlayer junctions seems

to be practically independent on most of the metal properties.

Note that this result is contrary to the one obtained for

the clean metal-semiconductor junctions, where a high

density of states at the metal Fermi level was found to

induce an important shift in the interface Fermi level (see

§II.2.3). This suggests that the barrier height for etched

junctions is mainly determined by the semiconductor-ad-atom

interaction.

In conclusion, the crucial physical quantities

determining the barrier formation in the metal-interlayer-

semiconductor junctions seem to be the ad-atom electro-

negativity and the adsorption site for the ad-atom. In other

words, the barrier height is practically determined by the

coupling between the semiconductor and the ad-atom

interlayer.

11.3. NON-ABRUPT METAL-SEMICONDUCTOR JUNCTIONS

11.3.1. Introduction

The mechanism of Schottky-barrier formation has been

the subject of a variety of proposed interpretations

(Schottky 1942, Bardeen 1947, Heine 1965, Rhoderick 1978,

Garcla-Moliner and Flores 1979). Very recently (Andrews and
Phillips 1975, Brillson 1978, Ottaviani et al.1980), new

experimental information has been obtained, which point to

the effect of the metal-semiconductor reactivity on the

barrier height of the junction. Another interesting feature

which occurs at some of these interfaces is the atomic

rearrangement that takes place at the metal-semiconductor

junction (Cheng et al.1980, Brillson et al.1981). In

particular, Brillson et al (1981) have shown that, in III-V
semiconductors, the abruptness of the junction interface is
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a function of the stregth of the metal-(III-V) semiconductor

bonding. Interface widths have been measured, and

correlated with thie metal-semiconductor heat of interface

reacticn AHR (defined as HF (semiconductor) - HF (metal-anion

complex of lowest energy), HF being the heat of formation

per metal atom). Both magnitudes appear to correlate linearly,

with the interface width extending from 20 A down to

practically abrupt surfaces.

Here, we advance a simple theory to explain existing

data on the widths of these interfaces, and to make

predictions about some materials not hitherto examined

experimentally. We assume that no structural effect at the

interface may prevent both crystals to interdiffuse, and

reach their thermudynamical equilibrium (Proc.Conf.on

Surfaces 1982).

11.3.2. Reference system: Ga on Ga-As, etc.

To apply chemical solution theory, it will be

instructive to discuss first a reference system.

This we choose, as in the Ga-GaAs interface, such that

the metal ion is identical to the semiconductor cation. For

this reference system, it is evident that the heat of

interface reaction AHR (which is a measure of the energy

required to substitute the semiconductor cation by the metal)

must be identically zero.

This is a binary system which we shall analyze using

methods related to the pioneering studies of Cahn and

Hilliard (1958). Figure 11.13 shows schematically the density

profiles of Ga and of As perpendicular to the planar inter-

face of Ga-GaAs, N1 and N2 being the respective numbers of

anions and cations in volume V. We assume no ch&nge in N

across the interface (in Ga metal, N = 5.1x102 2 =m-3 , while

in GaAs, N = 4.3x1022 cm-3 : so the approximation is fairly

reasonable in this material).

The formulation used below to analyze this reference

system can be viewed as based on that of Fleming et al.

(1976). This theory treats inhomogeneities by local theory,
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Ga

As

FIGURE 11.13.- Density profiles 
of Ga and As at

the planar interface.
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corrected by low order density gradients. The relation between

such a theory and the Cahn-Hilliard phenomenological approach

employed by Bathia and March (1978) has been clarified by

Bathia, March and Sutton (1978). With the simplifications

discussed here, the free energy density required, denoted by

*(r), as a function of the densities N1 , N2 and their

derivatives can be written as the sum of two parts, *1 and

*2' 01 being a local part and i 2 proportional to the

gradients of N1 and N2. The local part *1 can be expressed

in the form

1 [AN+N6 2 I a2 G 2 (11.37)
2 c V 7-) (Ac)

where N = NI+N 2 , kT is the appropriate isothermal

compressibility, G is the Gibbs free energy, while

AN = AN1 + AN2

and

Ac = N-I[(-c)ANI-cAN 2]

Evidently the second term in eq.(II.37) comes from the

concentration fluctuations, while the first term represents

contributions from fluctuations in the total density, but

combined with the effect of the size factor 6, which

multiplies again the change in concentration Ac. Evidently,

in the first term in eq. (II.37), the presence of size

differences leads directly to an interference term between

AN and Ac. For the reference system we assume AN = 0 while

we shall also take the size difference 6 to be unimportant,

and put that to zero as well. The only contribution

remaining then in the local part of the free energy is

therefore coming from the concentration-concentration

function Scc (0) defined by

1 2G 2 NkB T 2- (Ac) = (0 (Ac)
a c2  cc

The second part of the free energy, 02' can be written
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J2iA (N 1,N( ,N -2A 'NNd ~

1 (1 N 2 ) + A 2 2 ( N 1 , 2 ) _ 1 2 l , 2 ) 5 1 N 1 ) 2

(N = 1I+N 2 = constant), or equivalently as

B(N1 ,N 2 ) 2  ,

where B is essentially a homogeneous quantity, evaluated at

the local densities N1 and N2 .

11.3.2.1. ReguZar Sotution modet o6 concenttation

6Luctuati on4

In a solution, the most elementary model for the Gibbs

free energy, G, is to construct it as a concentration

weighted average of the Gibbs energies, G1 and G2, for the

two components, plus the usual expression for the entropy of

mixing. This leads immediately to S cc(0) defined above in

terms of 2G/a2 c as c(l-c). But this elementary treatment is

appropriate to an ideal solution, i.e. in the absence of

interactions between the two components. Once one introduces

an energy to measure these interactions, one is led to the

so-called regular solution model (see, for example, Bathia,

Hargrove and March 1973), namely

S cu(0) =_cc 2W
1+ k- c(1-c)

Here 2W is the total decrease in the energy of the system

when two atoms, A and B, of each solution are interchanged.

For the case under discussion, we identify 2W with the energy

of formation of the compound, say GaAs, minus the energy of

each one of the atoms, say Ga and As, in their own solution.

We see that S c(0) decreases with increasing W, the heat ofcc.

reaction for the system. We show data for 2W, obtained from

tabulations which can be found in Kittel (1971), in TabLe 11.3:

TABLE 11.3.- Interchange energy 2W in kcal/mol.

AlP AlAs InSb GaSb InP GaP InAs GaAs

39 27 8 8 23 20 17 17
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and it is interesting to note that of the systems examined

by Brillson et al. (1981), InP, IaAs and GaAs have rather

similar values of 2W, and we expect the teje'ence interface

thicknesses to be similar (see below).

As regards B(NI N2 ) above, we assume that the most

important contribution comes from the metallic electrons

which have not reacted to form III-V-like bonding. This

density is given by

NA = 3[N(cation) - N(anion)] = 3[N-2N11

where the factor of 3 comes because we are dealing with

trivalent metals, and now, following the gradient expansion

of Kirznits (1957), we write the second contribution as

1k -. 2(VNA)

Following Bathia and March (1978), we obtain the

interfacial free energy a by integrating the free energy

density * 1 " 2 through the interface, remembering that this

interface is of thickness i, in the form

Nk B T 2 1(NA) 2

a ( l) + 72N+7NScc

Nk BT I+ 2W '(-l1 1'A' 2 + l(vNA.-

Zc(1-C) B Tk.~ 72N A

Now, we take the mean values Ac ' 1/2, c % 3/4,

NA 3N/2 and LVN~j \ 3N/i, and by minimization we find

the interface thickness from

12 ~3 1

2B T[I+ 3

We now note that 2W/kBT in Table 11.3 varies between 60 and

10, in such a way that to a good approximation

*2 1 21 U. 2 (au) . (11.38)

t S
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If we take 2W = 1/2 eV, then 1 7.5 a.u. ' 4 . It is

interesting that this value is already a factor of about 10

larger than for surface thickness of, say, the liquid-metal-

vapour interfa-ce as obtained from a similar argument (Bathia

and March 1978).

It is important to emphasize that in the theory

presented above, the interface thickness, 1, depends only on

the heat of reaction (in this reference system). One merit

of this is that possible ambiguities associated, for example,

with the choice of the value of the isothermal compressibility

in eq.(LI.37) do not play any part in the final expression

for the interface thickness. However, at first sight, the

dependence of 1 solely on the heat of reaction predicted by

eq.(II.38) (12 L 1/W) does not seem to be in agreement with

experiment. But since experimental evidence has been

collected for the following III-V semiconductors, GaAs, InAs,

InP and GaSb, we have already remarked that from Table 11.3

the first three have very similar values of W and hence

would have much the same interface thickness on the present

theory. However for GaSb, W is smaller and hence the

interface thickness 1 is expected to be larger, which seems

to be reflected in the only one experimental value for this

material (Brillson et al.1981), while for AlP and AlAs we can

expect the interface thickness, 1, to be smaller.

11.3.3. General metal-semiconductor interface (eg. In-GaAs)

Let us now turn to the three-component system, but

consider only cases for which the metal has a similar

reactivity to the cation, say In on GaAs. The corresponding

density profiles are shown schematically in Figure 11.14.

The profiles for Ga and In, when combined, must give the Ga

profile for Ga-GaAs. We take into account the effect of the

metal on the As profile by assuming that 2W, the heat of

reaction for the two-component case, has changed by a

quantity which is equal to 1/2 of the heat of interface

reaction, as given by Brillson et al.(1981). This heat of

interface reaction is a measure of the different reactivity
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In

~-~4~7Ga

~:5;~7As

FIGURE 11.14.- Density profiles of Ga, As and

In at the planar interface.
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for In: the factor of 1/2 appears since As sees Ga and In

at the interface.

With this model, we can calculate

dl/d(AHR) [d(ARR/2)=-d(2W)] and a simple differentiation gives

the desired result

1 dl 1
I d(AHR) =- •

For 2W = 0.5 eV, we find that 1/1 dl/d(H R) l(eV)-  in
excellent agreement with the slope of the straight line

plot given by Brillson et al. (1981).

11.3.4. Conclusion

The main conclusion of this section 11.3 is that the

interface thickness is not only a function of AH R, but of

2W, the heat of reaction for the semiconductor. The

experimental data of Brillson et al. (1981) have been mainly

obtained for those semiconductors having a similar heat of

reaction, thus giving a unique dependence of 1 on AHR.

However, interface lengths must be greater for decreasing

heats of reactivity 2W. (For the reference system 1 ' 1/W ).

Table 11.3 indicates the interest in making measurements on

AIP (larger 2W) and on InSb and GaSh (smaller 2W) to test

the dependence of the interface lengths on 2W.
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CHAPTER IIl, CONCLLSIONS

In this Project we have analyzed some electronic

properties of GaAs-AlAs heterojunctions and of metal-

semiconductor junctions.

111. 1. GaAs-AlAs HETERDJNCTIONS

By means of a selfconsistent localized scheme, the

structural and electronic properties of several GaAs-AlAs

SL's grown in the (001) and (111) directions have been

obtained. Our results show that small ionic relaxations

appear at the (100)-interfaces, while no appreciable

relaxation is found at (ll)-interfaces. For the (100)-

interfaces, the ionic relaxation affects to the first Ga

and Al planes on each side of the As ions, by increasing the

anion-cation distances in a 2.5 %. This relaxation is a

purely interface effect and we conclude that the displac ments

obtained in finite SL's are valid for thicker SL's and

heteroj unctions.

Our calculation also shows a small transfer of charge

from AlAs to GaAs, so that a potential barrier between both

semiconductors appears. By using this barrier we have

obtained the shift of the electronic structure of GaAs with

respect to AlAs for thicker SL.'s and semiinfinite hetero-

junctions. We have obtained the following difference, AEV ,

between the top of the AlAs and GaAs valence bane.s:

AEv(001) = -.282 eV,

IEv(III) = 0.288 eV

in remarkable agreement with the experimental evidence.
The electronic spectrum of different SL's have also

been obtained, and we have found that in the (1ll)-SL's,

the upper valence state is spatially localized on the GaAs
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region. At the same time, the conduction band for the (100)-

SL's has been calculated as well. Our calculation shows a
very high effective mass, m* - 10.6 m, for the second

conduction band. This result may have important implications

for Raman scattering.

111.2. METAL-SEMICONDUCTOR JUNCTIONS

111.2.1. Clean metal-semiconductor junctions

Abrupt (111)-Si-Ag junctions have been analyzed by a
selfconsistent tight-binding calculation. For this junction

we have found that the interface Fermi level shifts with
respect to the Fermi level of a clean semiconductor surface,
moving towards the valence band. The extent of this shift
depends essentially on the strength of the metal-semiconductor

coupling.

By changing the parameters defining the junction, we
have analyzed the barrier formation of a general junction
and conclude that:

(i) The Fermi level at the interface -as measured from

a fixed point in the semiconductor- moves towards the
valence band as a function of the strength of the metal-
semiconductor coupling.

(ii) The density of states at the Fermi level decreases
for an increasing coupling of the metal and the semiconductor.

(III) The effect of an increase in the metal density

of states at the Fermi level on the junction properties is
similar to an increase in the metal-semiconductor coupling.

(iv) The barrier height Is essentially
determined by the coupling between the semiconductor and the
La6t metal layer.

111.2.2. Etched metal-semiconductor junctions

We have performed a realistic calculation of a Si-H-Ag
junction by means of a selfconsistent tight-binding
calculation. By an appropriate change of the interface

. .. ... . . . .. . : II I I J I H~ l 1 1 J I I I I I I II I i r I "
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parameters, we have explored the effect of having a Cs or a

Cl monolayer at the interface.

Our calculation shows:

(i) The Fermi level for the Si-Cs-Ag, Si-H-Ag and

SI-Cl-Ag junctions are at -0.17 ± 0.005 eV, 0.02 ± 0.05 eV

and 0.04 ± 0.05 eV, respectively, referred to the Fermi

level for the Si-Ag junction.

(ii) The main changes in the Fermi leve 'and in the

barrier height are induced by ad-atoms of low and high

electronegativity when they are supposed to sit on the mid

of three Si atoms. For atoms of low (high) electronegativity,

the Fermi level shifts towards the valence (conduction)

band.

(iii) The crucial physical quantities determining the

barrier formation in the metal-interlayer-semiconductor

junctions are the ad-atom electronegativity and the

adsorption site for the ad-atom. The barrier height is

practically determined by the coupling between the semi-

conductor and the ad-atom interlayer.

111.2.3. Non-abrupt metal-semiconductor junctions

Non-abrupt (III-V) semiconductor-metal junctions have

been analyzed by means of chemical solution theory. Our main

conclusion for these junctions is that the interface

thickness is not only a function of the metal-semiconductor
heat of reaction , as suggested by Brillson et al. (1981),
but of the heat of reaction for the semiconductor too. Interface

lengths must increase for decreasing heats of reactivity.

Thus, it can be expected smaller interface thicknesses for

AlP than for InSb and GaSb.
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